Resources

Read our publications and check eVai citations

Varchat: The generative AI assistant for the interpretation of human genomic variations
- De Paoli, F., Berardelli, S., Limongelli, I., Rizzo, E., & Zucca, S.
An AI‑based approach driven by genotypes and phenotypes to uplift the diagnostic yield of genetic diseases
- Zucca, S., Nicora, G., De Paoli, F., Carta, M.G., Bellazi, R., Magni, P, Rizzo, E., Limongelli, I.
Phenotypic Variation in Two Siblings Affected with Shwachman-Diamond Syndrome: The Use of Expert Variant Interpreter (eVai) Suggests Clinical Relevance of a Variant in the KMT2A Gene
- Taha, I.; De Paoli, F.; Foroni, S.; Zucca, S.; Limongelli, I.; Cipolli, M.; Danesino, C.; Ramenghi, U.; Minelli, A.
A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization
- Nicora G, Zucca S, Limongelli I, Bellazzi R & Magni P
An automatic implementation of ACMG/ClinGen guidelines for constitutional Copy Number Variants annotation and interpretation
- De Paoli F, Limongelli I, Rizzo E, Nicora G, Magni P.
A comparison of eVai, CADD and VVP variant prediction results on the ICR639 hereditary cancer dataset
- Nicora G, Limongelli I, Zucca S, Santolisier R, Magni P, Bellazzi R.
CardioVAI: An automatic implementation of ACMG‐AMP variant interpretation guidelines in the diagnosis of cardiovascular diseases
- Nicora G, Limongelli I, Gambelli P, Memmi M, Malovini A, Mazzanti A, Napolitano C, Priori S, Bellazzi R.
Variant interpretation supporting genetic diagnosis in exome sequencing NGS data: eVai clinical validation
- Zucca, S.; Limongelli, I.; Valente, M.; Asaro, A.; Garau, J.;Palmieri, I.; Bellazzi, R.; Cereda, C.